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Unsteady flow through an underdrained earth dam 

By ROGER J. M. DE WIEST 
Geological Engineering Department, Princeton University 

(Received 24 August 1959) 

An analytical treatment is given of the problem of the establishment of the flow 
through a dam or levee with a horizontal underdrain, when the .head behind it is 
raised and then kept a t  a constant value. The essential idea employed in the 
analysis is to consider the unsteady flow as a time-dependent perturbation of the 
final steady flow. The unsteady potential q5(x, y, t )  is expandedjn a power series 
of e--At, of the form 

q5(z, y, t )  = 9o(X,  Y) + #,(z, y) chi+ O(e-2ht), 

where #o(z, y) is the known steady-state potential, q5,(2, y) is a perturbation 
potential and O(e-2ht) = 42(z, y) ecZAt+ q&(z, y) e-3ht+ . . . . Each of the terms 
#%(x, y) e-nAt can be thought of as being a perturbation term of its precursor in the 
series, and the present approach is limited to the computation of the first per- 
turbation term #,(x, y) e-Al. 

It is shown that q51 satisfies Laplace’s equation V2#, = 0 in a dimensionless 
hodograph plane. The free-boundary condition is linear but complicated, con- 
taining the eigenvalue A, which is fixed by a determinantal equation. The ampli- 
tude of the displacement of the free surface is left undetermined; only the mode of 
the motion and the eigenvalue are computed. The results of a numerical example 
are summarized. 

1. Introduction 
Curle (1956) has obtained a general technique for considering the unsteady 

development of steady two-dimensional jet and cavity flows. The approach used 
was that of expanding the velocity potential <D in ascending powers of e-ht, so that 

@(z, y, t )  = Q0 (z, y) + <Dl (x, y) e-”l+ O(e-2Al). 

The unsteady free boundary was determined by normally displacing the steady- 
state boundary by an amount 8(s, t )  = 8,(s) e--ht+O(e-2ht). In  the present paper, 
the author applies the above technique to a problem of free surface flow in a porous 
medium. Although the two flows have some essentially different features (gravity 
is neglected in the jet flow, kinetic energy in the seepage flow), the technique works 
equally well in both cases. The boundary-value problem arising in the present flow 
is somewhat more complicated because the trigonometric functions appearing in 
the free-boundary condition of the jet flow are replaced by algebraic functions, 
so that no recursion formula is available for the coefficients of the Fourier series 
solution of V2@, = 0. Instead, these coefficients result from the solution of 
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a system of linear, homogeneous equations. The reader is expected either to be 
familiar with the flow through porous media or not to be interested in the subject 
as such, since this paper only emphasizes the extension of Curle’s technique and 
the solution of a special kind of mixed boundary-value problem. 

2. Statement of problem and outline of method 
The problem considered is that of a homogeneous dam or earth embankment, 

with a horizontal underdrain and behind which the level of a reservoir is gradually 
raised to a depth N (figure 1). It is to be expected that some time will elapse 
before steady flow will be reached after the head H has been kept at a constant 
value. The purpose of this paper is to analyse the flow when it approaches its h a 1  
steady state. 

Impervious rock 

FIGURE 1. Underdrained earth dam. 

It is assumed that the porous medium is completely saturated, homogeneous 
and isotropic, and that the flow is everywhere laminar. If the fluid is restricted to 
water of constant density and constant viscosity, then all the necessary condi- 
tions (Hubbert 1940) for the existence of a velocity potential @ are satisfied: 

where the symbols are defined as follows : K, hydraulic conductivity, dimensions 
[LIT]; k, permeability, depending upon the medium alone, dimensions [U]; 
p, viscosity of water; y ,  unit weight of water; 4, hydraulic head; y, elevation 
head; p / y ,  pressure head. @ has the dimensions [L2/T] and can be combined 
with the stream function Y, [L2/T] ,  to form the complex potential function 
W = @ +iY. K is assumed to be constant, and consequently so are k and the 
porosity 8 of the medium. Effects of capillarity are neglected and Darcy’s law in 
its simplest form can then be written 

q =  -KgradQ, (2.3) 

or 
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The insertion of q into the continuity equation div q = 0, leads to 

0 2 4  = 0. (2.6) 

Since the compressibility of the medium in unconfined flow can be neglected, 
(2.1), (2.3), (2.4)and(2.5)arevalidaswellfor$,(z,y)asfor$(z, y,t).  Steady-state 
values are denoted by the subscript 0, such as q,; u,; u,; p,; yo = tan-lu,/u,; 9,; 
@,; Yo; W,. The expansion of $(z, y, t )  in a power series of e-ht, of the form 

$(z, ?I, t )  = $&, y) + $&, 3) C A l +  ), (2-6) 

implies that $l(z,y) is a harmonic function, if $,(z,y) represents the known 
steady potential. In  (2.3), h represents an eigenvalue to be determined. The 
perturbation potential y) remains harmonic under a conformal transforma- 
tion. Since the steady hodograph can be reduced to a simple configuration, it is 
quite natural to look for a solution of V2#, = 0 in such a transformed hodograph 
plane, provided the basic equation of motion of the unsteady free surface is 
transferred to the steady boundary. As in the jet flow, the unsteady boundary 
may be found by normally displacing the steady-state boundary by an amount 

8(~, y, t )  = Sl(x, y) e-ht + O(e-2*t). 

3. Formulation of the boundary value problem 
Consider the dimensionless hodograph plane of figure 2. 

FIGURE 2. Hodograph plane 3~ = - K/G,,. 

The abscissa d = c(KH/Q,) ,  where c is a constant depending upon the ratio HIL 
of the dam and QH is the seepage per unit width for a head H on the dam. Applica- 
tion of the concept of a bounding surface (Lamb 1932, p. 7) leads to the basic 
equation of motion of the unsteady free surface 
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Let $(z, y, t )  satisfy (3.2). Then it follows that, at the unsteady free surface, 
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---$,e-.\t e = 2 

K $0, + #&, - $0, + (2$oz dlS +WOu$,, - $ly) e-AL + O(e-aAf). (3.3) 

This condition can be transferred to one at the steady free boundary in the 
hodograph plane. Assume that, corresponding to the displacement a1(x, y) e-At of 
the boundary in the physical plane, there is a displacement A/3 e-.\t in the hodo- 
graph plane. Under this assumption, (3.3) can be transferred to the steady 
boundary by addition of a term - A/3 ecAt. Once at the steady boundary, and only 
then, $& + $&, - $ou = 0, and, ignoring O(e-2At), (3.3) reduces to 

(3.4) 

Now, Qo A s  = - K(41,$,, + @lU 40u). (3.5) 

8 
- K A $ l =  ~ $ o ~ ~ ~ ~ + ~ $ o ~ $ l ~ - ~ l ~ - ~ ~ ~  

Recall that Wo = Q0 + iYo = &HE + QHPi, so that along the steady free surface 

Then (3.4) reduces via (3.5) and (3.6) to 

Ap= -8 aP - -no& and qi = -Kvo, 
an l -  QH 

With 

(3.7) reduces to 

A second relation between 8, and q51 can be found to hold at  the free surface by 
mathematically expressing that this surface is a material line. The unsteady free 
surface is not a streamline but has a velocity component normal to the boundary. 
This component is due: 

(a )  To changes in S1(z, y) e-.\t because of the exponential decrement with time. 
These changes, at any (z, y) are expressed as 

~ 

SI(x, y) e-n(t+At) - y) e-Al z - AAt8, e-At. 

The corresponding displacement of the boundary, of order e-.\l, is equal to 

It follows that. (3.9) 
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e-At because s changes as the fluid particles are convected ( b )  To changes in 
along the free surface. They can be expressed as 

so that (3.10) 

It is to be expected that in the case of a slow and gradual rise of the level behind 
the dam, the component given by (3.10) is small compared to the component of 
(3.9). The boundary-value problem will be set up and solved under the assump- 
tion that component (3.10) can be neglected. 

Application of (3.6) to (3.9) leads to 

Elimination of 6, from (3.8) and (3.11) gives 

(3.11) 

(3.12) 

(3.13) 

and introduce a = eQH/K2 ,  dimension [TI, to find at the free surface (p  = 1):  

(3.14) 

With the free-boundary condition (3. la), the problem is mathematically for- 
mulated. It is convenient to consider ah as a dimensionless parameter. 

4. The solution 
If there is a solution +1, it  must satisfy the condition 

( - +ip)/=i du + lo1 ( - #ia)a=n dp + 1' (+ia)a=d dp = 0, (4.1) 

expressing that the perturbation flow must satisfy the continuity requirement 
that the mass flux of the perturbation flow entering the fluid-filled region through 
the free surface equals that leaving it through the entrance surface and the drain. 
This perturbation flow vanishes like e-At and is superimposed on the steady flow. 
Separation of variables for V2+,  = 0 in the strip of figure 2 leads to a solution of 
the form 

Ina  n 

nn nn m 

#1 = C Ancosh-/3sin--a. 
n=l d d 

This solution satisfies the boundary conditions along FD', D'B' and FC; A ,  is 
left to be determined by the boundary condition along CB'. It follows from (4.1) 
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and some integrations that the dimensionless parameter ah now has to satisfy the 
condition 

nn nn - XA,sinh- + z ( -  l),A,sinh- 
1 d 1  d 

A ,  - 

m 

nn' 
(nt  ) d 

[(n2n2 - 2) ( - l)n + 21 cosh- 
d nn a 

(ah)2 = 

- x A,- [l - ( - l)"] cosh- + 
nn- d 1  

(4.3) 

Although from (4.3), the existence of a solution cannot be guaranteed, the value 
ah = 0 is excluded by consideration of the properties of eigenvalues. In  fact, 
from the nature of the eigenvalue problem and the physics of the flow, we may 
expect an infinite number of eigenvalues to satisfy (4.3). This result would be 
analogous to the infinite number of eigenvalues found by Curle in the unsteady 
jet problem. The smallest of these eigenvalues, Amin, will determine the slowest 
rate of decay. In itself, (4.3) does not determine ah, since the A ,  are unknown as 
yet and, moreover, will contain ah. It constitutes a check on the computation of 
the A ,  and this has been verified in a numerical example. 

The boundary condition of (3.14) can be mitten as 

nn nn 
1 d d  

m nn nn nn 

7 A ,  
sinh sind a = (ah)2 (1 + a2) x A ,  cosh- sin- a 

nn nn nn m 

+ (ah) 2 A,- cash- COB- a. (4.4) 1 d  d d  

Multiply each side by sin mnald and integrate over the interval (0, d), to obtain 

nn 1 d 
mna nna 

-- A ,  -- sinh = (1 + a2) sin __ sin __ da A ,  cosh - 
2 d  d 1 d d 
d mn mn 

+(ah): d 
1 rkt 

mna nna nna . mna 
cos- sin- da. (4.6) 

bm,n = j:(1+a2)sin----sin-da, d d c ~ , ~  = Jo d d 

Then, (4.5) can be written 

nn nn nn m d mn mn 
-Am- sinh--- = ( ~ h ) ~ ~ A , b , ~ , , c o s h - + ( a h ) ~ A , - c ~ , , c o s h - .  (4.7) 
2 d  d 1 d 1 d  a 

Introduce a new coefficient 
A , ,  m7T 

= - mn sinh -- , 
2 d 

and write (4.7) as 
m 

n= 1 
a,m = x a,hm,,(ah) (m = 1,2, ...), 

2 nn 2 nn 
h,,,(ah) = (aA)2 - bm,n coth - + (an) - cm. coth - 

d d d 
where 

nrr 
(4.10) 
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The integrations of (4.6) lead to 

cosn(m+n) (m + n), 
a 3  

cos n(m - n )  - -___ 
n2(m + n)2 

d3 
bm,n = n2(m - n)2 

[cos n(m - n) - 11 - [cosn(m+n)- 11 (m + n), 
d 

2(m - n) n 2(m + n) ?T 
cm,n = - 

= 0. 
d d3 d3 
2 6 Am2n2' 

b , ,  = -+--- 

The equations (4.9) represent a system of linear homogeneous equations, infinite 

be written explicitly as 
in number and with an infinite number of unknowns a,, a2, a,. ... This system can 

[h,,(ah) - 11 a, + ',,(ah) a2 + h13(ah) a3 + ... = 0,' 

',,(ah) a, + [',,(ah) - 1 J a2 + h23(ah) a3 + ... = 0, 

h31(ah) a, + ',,(ah) a2 + [h,,(ah) - 11 a3 + = 0, 
(4.12) I ... 

............................................................ 
In  order to have a nontrieal solution of this system of equations, its determinant 
should vanish. Thus the concept of the infinite determinant as developed by Hill 
in his Lunar Theory appears in this analysis. Conditions for the convergence of 
such a determinant aregiven by Whittaker & Watson (1947, pp. 36,413-17). The 
equations (4.12) are similar to Hill's equations except for the range of n in a,. In 
Hill's case, ?z assumes the values n = ... - 2, - 1,0,1,2,  .... while the parameter 
ah corresponds to Hill's p. It was shown by Hill that, for the purposes of his 
astronomical problem, a remarkably good approximation to the value of ,u could 
be obtained by considering only the three central rows and columns of his 
determinant. In  a numerical example ah has been determined within 2 yo by 
considering only the smallest positive root of the equations D,(ah) = 0, 
D,(ah) = 0, D,(ah) = 0, where the subscripts 4, 6, 8 denote the degree of the 
equations in ah which result from the successive consideration ofthe determinants 
two by two (rows and columns), three by three, four by four, of the matrix 

::). (4.13) 

A very good approximation to the value of1 ah is even determined by 
&(ah) = hll(ah) - 4 = 0. Once the parameter ah is determined, one can compute 
the coefficients hm,% from (4.10) and (4.11) and solve the system (4.12) for 
a,, u2, a,, .... Next the coefficients A ,  of (4.2) are computed by (4.8) and with this 
the problem is solved. I n  particular, the mode of motion of the unsteady free 
surface can be derived from the equation (3.11), viz. 

'11- '12 '13 '14 

'21 '22- ' '23 '24 

'31 '32 h33- h34 

'41 h42 '43 '44- ' " *  

... ... ... ... ... 

(4.14) 
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since qo = - Ksiny,. In  case the component (3.10) cannot be neglected, as in 
the case of a sudden rise of the water level in the reservoir, then 

or, by the use of (3.6), 

(4.15) 

(4.16) 

Insert the value of 8, from (3.8) into (4.16) and use (3.13) to find 

The study of the problem with this free-boundary condition can be done exactly 
in the same way as before although the computations of h,,,(ah) become tedious. 

5. A numerical example 
The mode of motion of the free surface and the exponential law have been 

computed for the family of dams for which d = 3 (De Wiest 1959). These compu- 
tations can be simply repeated for any other numerical value of d corresponding 
to the particular dam that must be investigated. The smallest positive root of 
D,(uh) = 0 and D4(aA) = 0 has been computed algebraically, whereas the 
smallest positive root of D,(ah) = 0 and D,(ah) = 0 has been determined graphic- 
ally on a large-scale plot, a reduced copy of which is given in figure 3. The smallest 
positive roots of the successive determinants are 

D8(uU) . (5.1 ) 

From this one may assume that the smallest root of D,,(ah) = 0 will converge to 
the smallest root of A(ah) = 0, as n --f 00. The values of a,, a,, a3, a4, . . . computed 
from the system (4.12) will differ if one considers two, three, four, . . . , equations 
and the correspofiding value of ah which makes their determinant vanish, 
because these values of ah vary slightly. However, it  is found that the values of 
the a, decrease very rapidly, so that it is sufficient to consider only the coefficients 
A ,  and A ,  in (4.2). 

A sketch of the mode of motion of the free surface is given in figure 4, for d = 3 
and ah = 0.49. It can be verified that the free surface is no longer a parabola as in 
the steady state and that component (3.10) is small compared to component (3.9). 
Also, the value of ah = 0.49 satisfies the continuity condition (4.3). In  figure 4, 
c* denotes the undetermined amplitude of the displacement of the free surface. 

It is felt that further theoretical investigations or experiments may lead to the 
relation between the unknown amplitude and the speed at  which the water level 
behind the dam rises. 

Determinant D,(ah) D4(ah) D,(ah) 
ah 0.479 0.492 0-480 0.490 

The present paper is extracted from a doctoral dissertation written in the Civil 
Engineering Department of Stanford University with Dr Byrne Perry as adviser. 
The writer also expresses his appreciation for the generous help given by 
Dr Gordon Latta of the Stanford Mathematics Department. The work was 
sponsored by the National Science Foundation under Grant NSF-G 41%. 
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